San Raffaele Telethon Institute for Gene Therapy
Targeted Cancer Gene Therapy
Immunotherapy has gained renewed interest for cancer treatment thanks to the efficacy of immune checkpoint blockers and adoptive therapy with genetically engineered T cells. However, many patients still fail to respond or develop resistance mainly because of an immunosuppressive tumor microenvironment (TME). We are developing strategies for gene-based and tumor-targeted delivery of immunostimulating cytokines with the goal of achieving stable therapeutic activity selectively at the tumor site while sparing other organs from exposure-related toxicity and preventing systemic or local counter-regulatory responses. By this approach we can reprogram the TME towards immune activation and elicit protective immunity against the tumor and its metastases.
Associated Research Unit: Gene Transfer Technologies and New Gene Therapy Strategies
Research activity
Leveraging on our experience with both ex vivo and in vivo gene delivery, we are pursuing this research with two different platforms, which are being developed thanks to research efforts in two areas:
- Reprogramming the TME by ex vivo genetically engineered tumor-infiltrating monocytes. Building on our original description of a population of tumor-associated macrophages (TAM) expressing the TIE2 receptor (TEMs) and exerting pro-tumoral functions, we have provided proof-of-principle of a new cell and gene therapy approach exploiting these cells to deliver interferon alpha (IFN-a) to tumors. Transplant of hematopoietic stem and progenitor cells (HSPC) engineered with lentiviral vectors (LV) expressing IFNa under the transcriptional control of the TIE2 gene enhancer/promoter and post-transcriptional regulation by miRNA-126 enables selective release of the cytokine in the TME by the HSPC TAM progeny, inducing robust tumor responses in several experimental tumor models. We showed effective reprogramming of the immune suppressive TME, leading to enhanced recruitment, activation and effector function of immune cells, which in turn induced tumor inhibition and protective immunity against multiple tumor-associated antigens, both in a leukemia and a glioblastoma model. The latter strategy has been brought to first-of-its-kind and first-in-human testing for the treatment of high-grade glioblastoma in collaboration with our spinoff Genenta Science, with preliminary but encouraging data on feasibility, safety and biological efficacy. More recently, we have developed a second-generation gene delivery platform, allowing switching On and Off cytokine secretion at the disease site and further advancing its specificity, applied it to both IFNa and IL-12, and showed synergistic therapeutic activity with checkpoint blockade or CAR-T cell therapy in mouse tumor models.
- In vivo gene-based targeted cytokine delivery to liver metastases by engineered lentiviral vectors. Colorectal (CRC) and pancreatic ductal adenocarcinomas (PDAC) are among the most common causes of cancer death, which is primarily due to liver metastatic (LMS) disease. Immune responses against CRC and PDAC LMS are limited by the immunosuppressive TME of the liver. To overcome this limitation, we are designing novel interventions aimed at reprogramming the LMS TME enabling protective immune responses against multiple tumor antigens. We have shown that IFNa delivery by TAM, born out of ex vivo engineered HSPC, can limit growth of several types of tumors in mouse models, including CRC LMS. Building on this observation and our studies of in vivo administration of immune-stealth LV to small and large animal models, we have developed a new LV-based in vivo gene delivery platform to rapidly convey the expression of IFNa to liver resident macrophages (Kupffer cells) and TAM in CRC LMS. LV-based delivery resulted in sustained and robust cytokine expression preferentially in areas surrounding LMS while limiting toxicity in other tissues, delaying tumor progression and leading to tumor clearance in some treated mice. Spatial transcriptomic and single cell omics show that tumor inhibition was associated with increased innate and adaptive immune activation. Altogether, in vivo gene-based delivery of IFNa to LMS could constitute an innovative therapeutic tool in the treatment of metastatic CRC and PDAC.
Birocchi F, Cusimano M, Rossari F, Beretta S. Rancolta PMV, Ranghetti A, Colombo S, Costa B, Angel P, Sanvito F, Callea M, Norata R, Chaabane L, Canu T, Spinelli A, Genua M, Ostuni R, Merelli I, Coltella N, Naldini L Targeted inducible delivery of immunoactivating cytokines reprograms glioblastoma microenvironment and inhibits growth in mouse models Sci Transl Med. 2022 Jul 13;14(653):eabl4106. doi: 10.1126/scitranslmed.abl4106. Epub 2022 Jul 13.
Soldi M, Sergi Sergi L, Unali G, Kerzel T, Cuccovillo I, Capasso P, Annoni A, Biffi M, Rancoita PMV, Cantore A, Lombardo A, Naldini L, Squadrito ML*, Kajaste-Rudnitski A*. Laboratory-Scale Lentiviral Vector Production and Purification for Enhanced Ex Vivo and In Vivo Genetic Engineering. Mol Ther Methods Clin Dev. 2020 Oct 20;19:411-425. *These Authors share senior authorship
Rossari F, Birocchi F, Naldini L, Coltella N Gene-based delivery of immune-activating cytokines for cancer treatment Trends Mol Med 2023 Feb 22;S1471-4914(23)00030-8.
De Palma M., Venneri M.A., Roca C. and Naldini L. Targeting Exogenous Genes to Tumor Angiogenesis by Transplantation of Genetically modified Hematopoietic Stem Cells. Nature Medicine. 2003; 9:789-95.
Escobar G., Ranghetti A., Ozkal-Baydin P., Squadrito M.L., Kajaste- Rudnitski A., Bondanza A., Gentner B., De Palma M., Mazzieri R. and Naldini L. Genetic Engineering of Hematopoiesis for Targeted IFN-α Delivery Inhibits Breast Cancer Progression. Science Translational Medicine 2014; 6:217.
Milani M, Annoni A, Bartolaccini S, Biffi M, Russo F, Di Tomaso T, Raimondi A, Lengler J, Holmes MC, Scheiflinger F, Lombardo A, Cantore A, Naldini L. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Molecular Medicine 2017 Aug 23.
Escobar G, Barbarossa L, Barbiera G, Norelli M, Genua M, Ranghetti A, Plati T, Camisa B, Brombin C, Cittaro D, Annoni A, Bondanza A, Ostuni R, Gentner B.* and Naldini L.*. Interferon gene therapy reprograms the leukemia microenvironment inducing protective immunity to multiple tumor antigens. Nature Communication 2018; 9:2896. *These Authors share senior authorship.
Milani M§, Annoni A§, Moalli F, Liu T, Cesana D, Calabria A, Bartolaccini S, Biffi M, Russo F, Visigalli I, Raimondi A, Patarroyo-White S, Drager D, Cristofori P, Ayuso E, Montini E, Peters R, Iannacone M, Cantore A*, Naldini L*. Phagocytosis-Shielded Lentiviral Vectors Improve Liver Gene Therapy in Non Human Primates. Science Translational Medicine 2019; 11:493. §equal contribution *These Authors share senior authorship
Mazzieri R.*, Pucci F.*, Moi D., Zonari E., Ranghetti A., Berti A., Politi L.S., Gentner B., Brown J.L., Naldini L., and De Palma M. Targeting the Angiopoietin-2/TIE2 axis Inhibits Tumor Progression and Metastasis by Impairing Angiogenesis and Disabling Rebounds of Proangiogenic Myeloid Cells. Cancer Cell. 2011, Apr 12;19(4):512-26. Co-first authors: RM and FP. Co-senior corresponding authors: LN and MDP.
De Palma M.*, Mazzieri R.*, Politi L.S., Pucci F., Zonari E., Mazzoleni S., Sitia G., Moi D., Venneri M.A., Indraccolo S., Falini A., Guidotti L.G., Galli R. and Naldini L. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell. 2008 Oct 7;14(4):299-311. *Co-first authors: MDP and RM. Corresponding authors: LN and MDP.
Federico Rossari
Postdoc fellow
Mario Squadrito
Project leader
Marco Notaro
PhD student
Nadia Coltella
Research Associate
Chiara Bresesti
PhD student
Carl Mirko Mercado
Research fellow
Melania Cusimano
Staff scientist
Anna Ranghetti
Senior research assistant
Deborah Ambrosecchia
Research assistant
Giovanna Giacca
PhD student
Giorgia Alvisi
Postdoc fellow
Marco Monti
Bioinformatician
Ottavia Vitaloni
Postdoc fellow